China OEM K Series 90 Degree Right Angle Bevel/Miter Gearing Arrangement Electric Motor with Reduction Gear gear patrol

Product Description

K series 90 degree right angle Bevel/Miter Gearing Arrangement electric motor with reduction gear

Features:
1. Compact structure and simple assembly;
2. Wide speed ranges and high torque;
3. Low noise, good sealing performance, high efficiency;
4. Stable and safe, long lifetime, universal;
5. Multi-structure, various assembling methods

Product photo:

Specification:

                                                                  ANG Helical Gear Motor
Model R17 ~ 187, F37-177, K37-187, S37-97
Input power 0.06kw ~ 250kw
Input speed 750rpm ~ 3000rpm
Reduction ratio 1/1.3 ~ 1/27000
Input motor AC (1 phase or 3 phase) / DC / BLDC motor
Install type Foot / CHINAMFG shaft / Hollow shaft / Output flange…
Efficiency 94% ~ 98 % for R F K series
Material of housing die-cast aluminum / Cast iron / Stainless steel
Precision of gear Accurate grinding, class 6
Heat treatment Carburizing and quenching
Accessories Brake / Flange / Motor adapter / Torque arm …

FAQ

Q: Can you make the gear motor with customization?
A: Yes, we can customize per your request, like power, voltage, speed, shaft size, flange, terminal box, IP grade, etc.

Q: Do you provide samples?
A: Yes. Sample is available for testing.

Q: What is your MOQ?
A: It is 1pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard product need 5-30days, a bit longer for customized products.

Q: Do you provide technology support?
A: Yes. Our company have design and development team, we can provide technology support if you
need.

Q: How to ship to us?
A: It is available by air, or by sea, or by train.

Q: How to pay the money?
A: T/T and L/C is preferred, with different currency, including USD, EUR, RMB, etc.

Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send inquiry directly, and we will respond within 24 hours.
 

Application: Industrial
Speed: Constant Speed
Number of Stator: Single or Three Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

miter gear

How do miter gears handle changes in direction and torque transmission?

Miter gears are specifically designed to handle changes in direction and torque transmission efficiently. Here’s an explanation of how they accomplish this:

1. Right Angle Transmission:

Miter gears are primarily used to transmit rotational motion at a 90-degree angle. When two miter gears with intersecting shafts are meshed together, they allow the input and output shafts to be positioned perpendicular to each other. This right angle transmission capability enables changes in direction within a compact space.

2. Interlocking Tooth Design:

Miter gears have teeth that are cut at a specific angle to match the gear’s cone shape. When two miter gears mesh, their teeth interlock and transfer torque between the gears. The interlocking tooth design ensures a smooth and efficient torque transmission, minimizing power loss and maximizing mechanical efficiency.

3. Bevel Gear Configuration:

Miter gears belong to the bevel gear family, which includes straight bevel gears and spiral bevel gears. Straight bevel gears have straight-cut teeth and are suitable for applications with moderate torque and speed requirements. Spiral bevel gears have curved teeth that gradually engage, providing higher torque capacity and smoother operation. The choice between straight and spiral bevel gears depends on the specific application’s torque and performance requirements.

4. Meshing Alignment:

Proper alignment of miter gears is crucial for efficient torque transmission and smooth operation. The gears must be precisely positioned and aligned to ensure accurate meshing of the teeth. This alignment is typically achieved using precision machining and assembly techniques to maintain the desired gear contact pattern and tooth engagement.

5. Load Distribution:

When torque is transmitted through miter gears, the load is distributed across multiple teeth rather than concentrated on a single tooth. This load distribution helps to minimize tooth wear, reduce stress concentrations, and increase the overall load-carrying capacity of the gears.

6. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of miter gears. Lubricants reduce friction and wear between the gear teeth, ensuring efficient torque transmission and minimizing heat generation. The type and method of lubrication depend on the specific application and operating conditions.

7. Backlash Control:

Backlash refers to the slight clearance between the mating teeth of gears. Miter gears can be designed with specific tooth profiles and manufacturing techniques to control backlash and minimize any unwanted movement or play. This helps maintain accuracy and precision in direction and torque transmission.

In summary, miter gears handle changes in direction and torque transmission through their right angle transmission capability, interlocking tooth design, bevel gear configuration, precise meshing alignment, load distribution across teeth, proper lubrication, and backlash control. These features make miter gears an effective choice for applications that require efficient and reliable direction and torque transmission.

miter gear

How do miter gears contribute to transmitting power at different angles?

Miter gears play a crucial role in transmitting power at different angles due to their unique design and meshing characteristics. Here’s a detailed explanation:

1. Intersecting Shaft Arrangement:

Miter gears are designed to mesh with each other at a 90-degree angle, resulting in an intersecting shaft arrangement. This arrangement allows the input and output shafts to be oriented perpendicularly, enabling power transmission at different angles. By changing the orientation and position of the miter gears, power can be redirected or transmitted along different axes.

2. Straight Tooth Design:

Miter gears have straight teeth that are cut at a right angle to the gear’s face. This tooth design facilitates proper meshing and engagement between the gears when they are at a 90-degree angle. The straight tooth design ensures efficient power transmission and minimizes energy losses during the transfer of rotational motion.

3. Conical Gear Shape:

Miter gears have a conical shape, where the gear teeth are cut on the conical surface. This conical shape allows for the correct alignment and engagement of the teeth when the gears mesh at a 90-degree angle. The conical gears ensure that the teeth maintain proper contact and transmit power smoothly, even when power is transmitted at different angles.

4. Equal Number of Teeth:

A crucial aspect of miter gears is that they have an equal number of teeth on both gears in a pair. This balanced tooth configuration ensures proper meshing and a constant speed ratio between the gears. The equal number of teeth is essential for transmitting power accurately and maintaining the desired rotational relationship between the input and output shafts.

5. Tooth Contact and Load Distribution:

When miter gears mesh, the contact between the teeth occurs along a single line, known as the line of contact. This concentrated contact area facilitates effective load distribution and ensures that the gear teeth bear the transmitted torque evenly. Proper tooth contact is vital for efficient power transmission and preventing premature wear or damage to the gears.

6. Lubrication and Maintenance:

To ensure optimal power transmission at different angles, proper lubrication is essential. Lubricants help reduce friction and wear between the gear teeth, ensuring smooth operation and extending the lifespan of the gears. Regular maintenance, including lubrication and inspection, helps maintain the performance and reliability of the miter gears over time.

In summary, miter gears contribute to transmitting power at different angles through their intersecting shaft arrangement, straight tooth design, conical gear shape, equal number of teeth, and consideration for tooth contact and load distribution. By utilizing these design features and ensuring appropriate lubrication and maintenance, miter gears enable efficient power transmission at various angles, making them valuable components in machinery and mechanical systems.

miter gear

Can you explain the unique design of miter gear teeth?

The design of miter gear teeth is distinct and plays a crucial role in the functionality of these gears. Here’s a detailed explanation:

1. Tooth Shape:

Miter gear teeth have a straight shape, similar to spur gears. However, unlike spur gears where the teeth are parallel to the gear axis, miter gear teeth are cut at a right angle to the gear’s face. This allows the teeth to engage correctly when two miter gears mesh together at a 90-degree angle.

2. Equal Number of Teeth:

Miter gears have an equal number of teeth on both gears in a pair. This ensures proper meshing and smooth transmission of rotational motion between the gears. The equal number of teeth is essential for maintaining a constant speed ratio and preventing any slippage or irregular motion.

3. Conical Shape:

Another unique aspect of miter gear teeth is the conical shape of the gears themselves. The teeth are cut on the conical surface, which allows for proper engagement and transmission of motion between intersecting shafts. The conical shape ensures that the teeth mesh correctly, providing efficient power transmission at the desired angle.

4. Meshing at 90-Degree Angle:

Miter gears are designed to mesh at a 90-degree angle, allowing for power transmission between intersecting shafts. The teeth are specifically cut to facilitate this arrangement, ensuring that the gears engage smoothly and transmit rotational motion without any loss or disruption.

5. Tooth Contact and Load Distribution:

When miter gears mesh, the contact between the teeth occurs along a single line, known as the line of contact. This concentrated contact area enables effective load distribution and ensures that the gear teeth bear the transmitted torque evenly. Proper tooth contact is vital for minimizing wear and maintaining the longevity of the gears.

6. Lubrication and Noise Reduction:

The unique design of miter gear teeth can influence lubrication and noise levels. Adequate lubrication is essential to reduce friction and wear between the teeth during operation. Additionally, the straight tooth profile of miter gears tends to produce more noise compared to gears with helical or curved teeth. Proper lubrication and noise reduction measures are often employed to optimize the performance of miter gears.

In summary, the unique design of miter gear teeth includes their straight shape, equal number of teeth, conical shape of the gears, meshing at a 90-degree angle, tooth contact along a line, and considerations for lubrication and noise reduction. These design features ensure efficient power transmission, proper load distribution, and reliable operation in mechanical systems that utilize miter gears.

China OEM K Series 90 Degree Right Angle Bevel/Miter Gearing Arrangement Electric Motor with Reduction Gear gear patrolChina OEM K Series 90 Degree Right Angle Bevel/Miter Gearing Arrangement Electric Motor with Reduction Gear gear patrol
editor by CX 2023-09-23

Tags:

miter gears

As one of leading miter gears manufacturers, suppliers and exporters of mechanical products, We offer miter gears and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of miter gears

Recent Posts